
Techniques for Data-Driven Curriculum Analysis

Gonzalo Méndez
Escuela Superior Politécnica

del Litoral
Vía Perimetral, Km. 30.5

Guayaquil, Ecuador
gmendez@cti.espol.edu.ec

Xavier Ochoa
Escuela Superior Politécnica

del Litoral
Vía Perimetral, Km. 30.5

Guayaquil, Ecuador
xavier@cti.espol.edu.ec

Katherine Chiluiza
Escuela Superior Politécnica

del Litoral
Vía Perimetral, Km. 30.5

Guayaquil, Ecuador
kchilui@espol.edu.ec

ABSTRACT
One of the key promises of Learning Analytics research is to
create tools that could help educational institutions to gain
a better insight of the inner workings of their programs, in
order to tune or correct them. This work presents a set of
simple techniques that applied to readily available histori-
cal academic data could provide such insights. The tech-
niques described are real course difficulty estimation, de-
pendance estimation, curriculum coherence, dropout paths
and load/performance graph. The description of these tech-
niques is accompanied by its application to real academic
data from a Computer Science program. The results of the
analysis are used to obtain recommendations for curriculum
re-design.

Categories and Subject Descriptors
K.3.1 [Computing Milieux]: Computers and Education-
Computer Uses in Education

Keywords
Learning Analytics, Curriculum Design

1. INTRODUCTION
Analytics could be applied at very different levels in an ed-

ucational institution. Siemens and Long [18] seminally clas-
sified the scope of analysis into five levels: Course, Depart-
mental, Institutional, Regional and National/International.
The first two levels are the main focus of Learning Analyt-
ics, while the remaining three are usually called Academic
Analytics [4]. Due to this distinction, most of previous re-
search in Learning Analytics [9] deal only with the first level:
the analysis of the behavior and interaction of students and
faculty inside a course. Apart from studies of dropout [24],
there is very little research on how to analyze the learning
process at Departmental or Program level in order to guide
the design or re-design of a program curriculum.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
LAK ’14, March 24 - 28 2014, Indianapolis, IN, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2664-3/14/03 $15.00.
http://dx.doi.org/10.1145/2567574.2567591.

To bootstrap the discussion of this also important level,
this work proposes a simple set of Learning Analytics tech-
niques that could help program coordinators or faculty groups
to gain a better insight on the nature and current perfor-
mance of their programs and provide insights on possible
problems or difficulties that the students may have with
it. Such techniques could be useful for what we call Data-
Driven Curriculum Analysis. These techniques are designed
to work exclusively with readily available academic perfor-
mance date (final grades) to facilitate its immediate adop-
tion in a widely variety of institutions. To validate the use-
fulness of the techniques, they are showcased in a case study
involving at least 12 years of academic data of a particular
Computer Science program that is being re-designed. The
techniques, however, could be applied to any existing cur-
riculum.

The structure of the paper is as follows: Section 2 briefly
reviews the related work on curriculum design techniques.
Section 3 provides details on the context and data used as
case study. Section 4 describes a technique to establish the
actual difficulty of course based on the value and distribu-
tion of grades. Section 5 provides a correlation analysis to
determine the dependence between courses. Section 6 pro-
poses the use of Exploratory Factor Analysis to find the un-
derlying structure and coherence of the curriculum. Section
7 identifies problematic courses that could lead to student
dropout. Section 8 analyzes the performance of the students
under different academic loads, in order to recommend the
number of courses per semester. Finally, Section 9 draws
conclusions from the analysis performed and the recommen-
dations for the re-design of the program in the case study.

2. RELATED WORK
Curriculum analysis and design is a process that follows

generally the following systematic approach: precise identifi-
cation of the curricular design specifications and constraints
(student outcomes, competences, learning goals); identifica-
tion of a curricular conceptual model (research based learn-
ing, inquiry learning, problem based learning, case based
learning, etc.); developing and testing of the curricular de-
sign; and refining the design with the feedback of students
and stakeholders [15]. Due to the nature of the design
process, some of its components can be revisited after sev-
eral iterations. A key component in this process is the es-
tablishment of the conceptual model, which is related to:
instructional contexts that are needed to be emphasized,
teaching/learning methods, resources, etc. Many studies are
mainly devoted to study the effects of some components of

148

a curricular conceptual model or the innovation of teach-
ing strategies in the curriculum [15, 7, 23], but few of them
examine their curriculum in order to base their redesign de-
cisions on data of the corresponding academic program.

One example of an attempt to a data-driven curriculum
redesign is what Sundermand and Price conduct in the cur-
riculum incubator [20]. In their work, they experimented
with teaching strategies, learned from them and introduced
curricular modifications but mainly at the course level. Al-
bert [1] states, from the medical education point of view,
that most of the decisions related to curriculum and teach-
ing are based on “opinions, intuitions, and personal pref-
erences”; thus, she presents a curriculum for new rheuma-
tology trainees that is based on trends that appeared af-
ter analyzing clinical problems that had the greatest educa-
tional relevance in the rheumatology field. In this case, the
decision-making process about the curriculum was mostly
based on teaching experiences of relevant educational pieces.
Nonetheless, and despite these efforts, no studies present the
analytical approach that is presented in this research. It was
not found any literature that offers a varied set of techniques
to identify difficult courses and their impact on GPA or de-
sertion in a program, as the techniques presented in this
article.

3. CASE STUDY
The data analyzed in this article consists on the aca-

demic performance information of Computer Science (CS)
undergraduate students from the Electrical and Comput-
ing Engineering College of ESPOL University in Guayaquil,
Ecuador. The dataset spans the academic history from 1978
up to 2012 and is composed by the grades of 2543 individ-
uals that eventually enrolled in the CS program of ESPOL.
The name of the ESPOL’ CS program has changed over
time: 1) Electrical Engineering with a minor in Comput-
ing, 2) Computer Engineering, and 3) Computer Science.
The two later degrees compose the most recent history of
the investigated time interval and have been offered in three
different concentrations or majors: a) Multimedia Systems,
b) Technological Systems, and c) Information Systems.

According to the performance scoring system of ESPOL,
a class grade can take a real value from the interval [0.00,
10.00] and a student passes a given class by obtaining a grade
equal or greater than 6.00, otherwise he/she fails. The gen-
eral CS curriculum categorizes its courses according to the
topics and contents they cover in: 1) Basic Sciences, 2) Hu-
manities, and 3) Professional Training courses . Moreover,
each CS profile has its own concentration courses and con-
tains several both selective and elective credits.

At ESPOL, students are allowed to adjust the number of
courses they want to take within the selective elective and
free-selective categories, according to the amount of credits
they accumulate throughout their degree. Therefore, some
students may complete the specified number of credits for
these categories with more (or fewer) courses than others.
Because of this, the entire academic history generated by
the students considered in this analysis defined a huge set of
unique courses. The heterogeneity of this set is not only ex-
plained by the diversification introduced by each program’s
majors and their selective elective and free-selective courses,
but also by the curricular modifications that were performed
on the CS programs during the time interval considered.

In order to prepare such varied data for a proper anal-

ysis, a few processing steps were performed on the origi-
nal dataset to clean it properly. First, we dealt with any
missing information introduced by curricular modifications.
Some of these changes include 1) Courses that were removed
from some versions of the curricula, 2) Courses whose type
was changed from compulsory to elective, 3) Courses that
were split into more than one courses, 4) Courses whose
names were modified.To cope with these events, a course-
course matching process was conducted to determine the
agreements among two or more distinct courses that can be
considered equivalent across different versions of the curricu-
lum. At the end of this course-matching process, the set of
unique courses was slightly reduced but it still contained a
considerable amount of missing grading information.

To reduce the amount of missing data, we discarded in our
analysis courses not highly frequently chosen by students
and English courses that escape from the conceptual design
of CS. With this step, we selected a common core of 27
classes for which grading information was readily available.
The set of courses included in the last version of the dataset
is illustrated in Figure 1. This set is composed by 8 basic
sciences courses, 16 on professional instruction and 3 from
the humanities category.

For some analysis, due to discontinuities in the data due
to program changes, only the last 12 years, where the cur-
riculum has stayed fairly static, were used to avoid the in-
troduction of noise.

PROGRAMMING
FUNDAMENTALS

OBJECT-ORIENTED
PROGRAMMING

DATA STRUCTURES

PROGRAMMING
LANGUAGES

DISCRETE
MATHEMATICS

ECOLOGY
AND ENVIRONMENTAL

EDUCATION

ELECTRICAL
NETWORKS I

ALGORITHMS
ANALYSIS STATISTICS DIGITAL

SYSTEMS I

DIFFERENTIAL
EQUATIONS

MULTIVARIATE
CALCULUS

DATABASES SYSTEMS I
COMPUTERS

ARCHITECTURE
AND ORGANIZATION

SOFTWARE
ENGINEERING I

SOFTWARE
ENGINEERING II

ECONOMIC
ENGINEERING I OPERATING SYSTEMS

COMPUTERS
AND SOCIETY LINEAR ALGEBRA

DIFFERENTIAL
CALCULUS PHYSICS AGENERAL CHEMSTRY

INTEGRAL CALCULUS

HUMAN-COMPUTER
INTERACTION

ARTIFICIAL
INTELLIGENCE

ORAL AND WRITTEN
COMMUNICATION
TECHNIQUES AND

RESEARCH

BASIC SCIENCE (8) HUMANITIES (3) PROFESSIONAL
TRAINING (16)

Figure 1: Courses included on the core curriculum
of the ESPOL Computer Science program

4. DIFFICULTY ESTIMATION
When looking at the difficulty levels of the courses they

are composed of, curricula constitute very diverse sets. In
particular for CS, given the varied nature of the knowledge
areas involved in the professional training process of com-
puter scientists, courses may exhibit distinct difficulty levels.

149

The objective characterization of courses in terms of their
difficulty is not a trivial task. Factors such as instructors’
particular characteristics, students’ affinity with the course’
concepts, or grading stringency standards applied are the
causes why the computation of a single value to represent
the difficulty level of a course is not an easy problem. In this
regard, the number of credits contributed by a course within
a curriculum is normally considered as a difficulty indicator
because it is intended to suggest the work and time loads
that students are supposed to experience in a certain period
of time (a week, for example) to successfully pass a given
class. However, the credit system overlooks other factors
that are not necessarily related to time and effort. Spe-
cial considerations such as extracurricular activities, other
courses taken at the same time, and aspects not related to
the academic life, can make a course easier or harder inde-
pendently of its number of credits.

The historical average grade of a course j, denoted here
as HAGj and defined according to Equation 1, where rij
is the grade obtained by the student i in course j and N j

s

is the total number of students that have taken the class j,
might be the most basic data-inspired indicator that comes
to mind when searching for objective estimators of difficulty.
However, HAG not only can be also biased by the factors
mentioned above, but it also ignores the overall academic
performance of students that generated the grades involved
in its computation. Thus, this value is not suitable to sug-
gest, for example, whether a course rated as easy was easy
because it was always taken by high-performing students or
because its contents were not challenging enough in such a
way that even low-performing students got high grades.

HAGj =

∑
i

rij

N j
s

(1)

In this section, we propose a technique to compute em-
pirical, data-based, courses’ difficulty estimators for courses
of an actual CS curriculum. We also apply two of the ap-
proaches suggested in [5] to estimate courses difficulty levels
and their corresponding grading stringency indices. Then,
we compare these indicators with the results of a percep-
tion study that measured the opinion of students about the
difficulty of courses, impact of courses’ grades on GPA, and
importance of some courses to continue in the program.

4.1 Description
The influence of a course on a student’s academic his-

tory is related to which extent it contributes positively or
negatively to the student’s overall performance. If the grade
point average (GPA) is considered as a general performance
indicator, a course contribution can be seen as positive or
negative according to whether the grade obtained on it is
greater or lower, respectively, than the student’sGPA. Thus,
the distance between the GPA and a particular course grade
can be seen as a measure of how much that class shifted, up
or down, the student’s GPA. That is, how much the given
course move students away from their GPA or bring them
closer to it.

In order to characterize the difficulty of a course we pro-
pose to construct a statistical distribution of the distances
between the GPAs of all the students that took the given
course and the grades they got on it. Examples of these
distributions are shown in Figure 2 for two courses of the
ESPOL CS curriculum: Algorithms Analysis (Figure 2a)

and the Oral and Written Communication Techniques and
Research course (Figure 2b).

−3

mean: 0.6270042
skewness: -0.7813815

μ

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Algorithms Analysis

−3 −2 −1 0 1 2 3
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

mean: -0.666954
skewness: 0.1693253

μ

(b) Oral and Written Communication Techniques

Figure 2: GPA - course grade distances distribution
for two courses from the ESPOL CS curriculum

As it can be observed the shapes of these two distribu-
tions (shown in red) differ significantly in the longitude and
leaning of their longer tail. In the case of Algorithm Analy-
sis, the mass of the distribution is concentrated to the right
of the figure, which means a negative skewness. On the
contrary, values for the Oral and Written Communication
Techniques and Research course are consolidated to the left
side of the distribution mean, which leads to a positive skew-
ness distribution. The skewness values for the distribution
computed from the differences between the students’ GPA
and their course grades, are always related to whether the
course grades have been greater or lower than the GPAs of
the students involved. In that sense, the distribution skew-
ness can be considered as a difficulty indicator of a course.
Thus, The more negative the skewness, the more difficult
the course is.

Caulkins et. al. [5] propose that a course j has a grading
stringency index βj and multiplicative magnitude αj that
represents its difficulty level. These two values are computed
according to Equations 2 and 3, respectively. In these equa-
tions, GPAi represents the overall academic performance of
student i and rij and N j

s are defined as explained above.

αj =

∑
i

GPAi
2∑

i

(rij ∗GPAi)
(2)

βj =

∑
i

(GPAi − rij)

N j
s

(3)

150

Note that the equation for the β values include the dis-
tance between the GPA and the course grade of students
(GPAi − rij) on which we based the skewness distribution
computation. Thus, the grading stringency standard is also
an indicator of how much a course moves the student’s GPA.
The use of the skewness however, also takes into account the
shape of the distribution of grades.

4.2 Application
The three approaches detailed in section 4.1 were applied

over the courses that compose the curriculum show in Fig-
ure 1. Table 1 details these three magnitudes for the 27
courses, which have been ordered by their distribution skew-
ness value.

Parallel to these computations, a perception study was
conducted with 80 students of the CS program. The per-
ceptions about the following courses’ characteristics were
gathered using a survey: difficulty level, negative impact on
GPA, and importance in the program. The survey included
questions that asked the student to identify a maximum of
six courses that were considered: difficult, with a high fail-
ure rate, and important to continue the CS program. De-
scriptive results of this survey are shown in Figure 3. As
can be seen, courses like Operating Systems, Programming
Fundamentals, Object-Oriented Programming, Data Struc-
tures, among others, are perceived either difficult and/or
negatively related on the GPA of a student, coinciding with
what appears in Table 1. In addition, the importance of a
course to continue in the CS program was identified by stu-
dents. The following are the courses that appeared between
10% to 50% of the times as important courses to continue
in the CS program: Physics A (10%), Electrical Networks
Systems I (10%), Research Methods Applied to Comput-
ing (11%), Physics C (14%), Differential Calculus (15%),
Statistics (18%), Programming Languages (23%), Differen-
tial Equations (24%), Operating Systems (30%), Linear Al-
gebra (46%), Programming Fundamentals (50%). These
courses’ importance indicators will be used to contrast the
findings in section 7.

0%

5%

10%

15%

20%

25%

30%

35%

Perceived Negative Impact over GPA

Peceived Difficulty

Figure 3: Students’ perceptions about difficulty and
negative impact of courses on their GPA

The results obtained through the three approaches pre-
sented above were contrasted with students’ perceptions about
the level of difficulty and negative impact of courses in their

GPAs. It was found that the majority of the courses that
had a negative skewness, higher Alpha and Beta values are
also perceived as courses with high level of difficulty and a
negative impact on the overall GPA of students, once they
are approved. These findings might be useful for faculty
members in planning, for example, the split of some courses
into others or the inclusion of teaching/learning strategies
that help students to reach better scores from (difficult)
courses. Curriculum design is a process that goes from set-
ting student outcomes, that must be achieved at the end of
a program, to guaranteeing that these outcomes are actually
developed and met [10]. As such, when designing curricu-
lum, data-evidences are key inputs of the implicit decision
making process that is conducted. Finally, it is important
to note that these measurements of difficulty are averaged
among different instructors with different methodologies and
grading stringency. Obtaining these values for pairs Course-
Instructor should provide a more reliable estimate of the real
difficulty.

5. DEPENDANCE ESTIMATION
Curricula for undergraduate programs are normally struc-

tured in such a way that their courses are not totally in-
dependent from each other. That is, concepts reviewed in
advanced courses commonly depend on the contents covered
previously, in other basic courses. This pre-requisite based
system causes that students follow a logical sequences that
guarantee that the contents associated to specific concepts
or Knowledge Areas are covered incrementally. Based on
this fact, this section presents a simple correlational analy-
sis as a measurement of the inter-course dependance within
a curriculum.

5.1 Description
As a simple measurement of the dependance degree, a

Pearson’s correlation coefficient could be applied to the fi-
nal grades to estimate the linear relationship between the
students’ academic performance on each pair of courses in a
curriculum. We propose this technique under the assump-
tion that the contents of certain courses are of higher impor-
tance for other subsequent subjects than others. Consider,
for instance, that the contents covered on the Differential
Calculus course are the base over which the Integral Cal-
culus topics are developed. Under this hypothesis, we are
supposed to find a strong correlation on the performance of
a student taking the Integral Calculus course and the perfor-
mance he/she obtained on the corresponding pre-requisite.

5.2 Application
The correlation analysis was applied to the core courses of

the ESPOL CS curriculum. The results of these computa-
tions are shown in the color-map of Figure 4. The correlation
degree between two courses are represented by the color of
the corresponding cell: high correlation values are shown in
dark colors and lower values are shown in white tones.

As it can be observed, the correlation values found in this
part of the alaysis are not specially high among most of
the courses. This fact suggests that the inter-course de-
pendances within the curriculum analyzed are not strong.
The three highest Pearson’s correlation coefficients of the
depicted map occurs for the Computers and Society course
when is observed with: 1) Human-Computer Interaction
(0.6226), 2) Discrete Mathematics (0.614), and 3) the Op-

151

Table 1: Skewness values for some GPA-course grades distances distributions

Course skewness α β
1 Algorithms Analysis -0.7814 1.1435 1.0791
2 Operating Systems -0.7751 1.0891 0.7334
3 Programming Fundamentals -0.7620 1.3458 2.0529
4 Object-Oriented Programming -0.7282 1.2001 1.3907
5 Data Structures -0.7118 1.1452 1.1113
6 Digital Systems I -0.7042 1.1912 1.3570
7 Electrical Networks I -0.6992 1.2300 1.4962
8 Programming Languages -0.6841 1.2032 1.4374
9 Discrete Mathematics -0.6799 1.1503 1.1343
10 Economic Engineering I -0.6705 1.1426 1.0519
11 Multivariate Calculus -0.6107 1.2126 1.4332
12 Integral Calculus -0.6005 1.2026 1.3283
13 Differential Calculus -0.5978 1.2842 1.7069
14 Statistics -0.5912 1.2519 1.7823
15 Artificial Intelligence -0.5793 1.1214 0.9268
16 Linear Algebra -0.5494 1.3042 1.8891
17 Software Engineering I -0.5385 0.9891 -0.0499
18 Physics A -0.5310 1.2302 2.4057
19 Differential Equations -0.5244 1.3066 1.8509
20 General Chemistry -0.4212 1.1108 1.2535
21 Computers and Society -0.3889 1.0895 0.6651
22 Human-Computer Interaction -0.3859 1.0396 0.3970
23 Databases Systems I -0.3680 1.1201 0.8373
24 Software Engineering II -0.2021 0.9742 -0.1283
25 Ecology and Environmental Education -0.1473 1.0061 0.2150
26 Computers Architecture and Organization 0.0009 0.9750 -0.1167
27 Oral and Written Comm. Techniques 0.1693 0.9432 -0.3152

erating Systems (0.582) courses. It is interesting to see that
the Computers and Society course is not an immediate pre-
requisite of its most correlated courses. However, the con-
tents reviewed on this class constitute the most basic CS
topics that students are exposed to at the very beginning
of their academic path. Also important to note is that the
performance of the students in Programming Fundamentals,
one of the most difficult initial courses, has very little corre-
lation with their performance in any other course. It seems
that the level of stringency in this course is much higher than
needed, as obtaining a high or low grade does not heavily
influence the further achievements in the program.

De Koning et al. [6] carried out a study for a three-year
bachelor program and concluded that predictors of first-year
courses were not the same predictors for subsequent years,
even though they also affirm that prior grades and learning
activities were strong and stable predictors. Despite cogni-
tive skills and previous knowledge of students are important
predictors of achievement, recently, affective variables like:
motivation, self-drive, dedication time, learning preferences,
among the most important ones, have been identified as im-
portant as those linked to scores [19, 3]. We have found no
significant correlations between the scores reached in pre-
requisite courses and their subsequent courses; thus, in our
case other factors have to be explored and studied to predict
students’ achievement.

6. CURRICULUM COHERENCE
In this paper, we refer to a curriculum as coherent when it

constitutes a set of courses that allows students to achieve,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Correlational Pearson’s Coefficient

Figure 4: Colormap of courses performances correla-
tions. Courses appear codified according to Table 1

by the completion of their degrees, several logically inter-
related outcomes or competences. Several curricular guide-
lines for undergraduate programs in computing, such as the
proposed by the ACM and the IEEE Computer Society, nor-
mally define a Body of Knowledge (BoK) to cover the CS
professional domain according to the desired competences of
their future graduated students. In such guidelines, a BoK

152

is organized in several Knowledge Areas (KAs) which are
further composed by various Knowledge Units (KUs) that
ultimately constitute the building blocks of the courses in-
cluded in a curriculum.

In this work, we hypothesize that when a curriculum is co-
herent, it should mask, somehow, an underlying structure of
courses grouping together in sets of courses that cover con-
cepts associated to several interrelated professional compe-
tences. Moreover, we believe that such grouping should re-
veal the level at which a set of courses are coherently aligned
with the learning outcomes aimed by a given curricular de-
sign.

In this section, we propose the use of Exploratory Factor
Analysis (EFA) as a technique to reveal the grouping course
structures hidden underneath a curricular design.

6.1 Description
The goal of EFA is to uncover the underlying structure of

a relatively large set of variables by identifying interrelation-
ships among them. This technique is of special usefulness
to discover which variables in the set form coherent subsets
that are relatively independent of one another [21]. It out-
puts several unobserved latent variables, known as factors,
that summarize patterns of correlation among the observed
variables. These factors are thought to reflect the underly-
ing processes that have created the correlations among the
observed input variables.

The hypothesis behind the use of EFA in the context of
the academic performance achieved by students who enroll
in the courses that compose a specific curriculum can be
stated as follows: Several individual variables (in this case,
the grades obtained by the students in each of the analyzed
courses) combine with the grades of some other courses to
form factors that represent the big areas of the students’
professional training process.

6.2 Application
In this part, we based our analysis on the academic per-

formance of the last six generations of CS undergraduate
students who successfully completed their degree at ESPOL
between 2000 and 2012. A maximum-likelihood factor anal-
ysis was performed on the correlation matrix of the dataset
composed by the performance achieved by 333 students on
each of the 27 courses shown in Figure 1. The analysis was
executed by using the functionalities provided by the psych
statistical package1 available for the R statistical software
[16]. A varimax rotation was applied on the first version of
the loadings matrix resulting from the initial extraction of
factors.

From the 27 factors, The first six had eigenvalues greater
than 1. We investigated the cumulative variance that can
be captured from the dataset by executing the EFA with 5,
6 and 7 factors. The values found for this parameter in the
three tests were 33, 36 and 37 percent, respectively. More-
over, in each analysis, a hypothesis test was conducted to
measure whether each amount of factors was sufficient. The
p value for the three tests were 0.0827, 0.284 and 0.541, re-
spectively. Since the idea of Factor Analysis is to summarize
the patterns of correlations with as few factors as possible,
five factors were selected.

The groups of courses included in the five factors found in
our analysis are shown in Figure 5. These set of courses re-

1http://cran.r-project.org/web/packages/psych/index.html

Table 2: Factors summed squared loadings and vari-
ances

Factors
1 2 3 4 5

SS loadings 2.82 1.99 1.55 1.33 0.98
Proportion Var 0.11 0.08 0.06 0.05 0.04
Cumulative Var 0.11 0.18 0.24 0.3 0.33

sult after the application of a cutoff value of 0.3 on the load-
ings matrix of the orthogonally-rotated factors. Any course
with a loading value greater than the predefined threshold
has been retained in the analysis.

Table 2 details the sum of squared loadings (SSL) asso-
ciated to each factor. As mentioned before, the five factors
capture a cumulative variance of 0.33. That is, together,
they account for 33% of the variance present in the 27 per-
formance scores. The proportion of variance that is individ-
ually captured by each factor is also shown along with the
corresponding cumulative value.

6.3 Interpretation of Factors

PROGRAMMING
FUNDAMENTALS

PROGRAMMING
LANGUAGES

DISCRETE
MATHEMATICS

ECOLOGY
AND ENVIRONMENTAL

EDUCATION

ELECTRICAL
NETWORKS

ALGORTIHMS
ANALYSYS STATISTICS

MULTIVARIATE
CALCULUS

DATABASE SYSTEMS I HARDWARE
ARCHITECTURES

SOFTWARE
ENGINEERING II

ECONOMIC
ENGINEERING I OPERATIVE SYSTEMS

COMPUTING
AND SOCIETY LINEAR ALGEBRA

DIFFERENCIAL
CALCULUS BASIC PHYSICS

INTEGRAL CALCULUS

HUMAN-COMPUTER
INTERACTION

ARTIFICIAL
INTELLIGENCE

ORAL AND WRITTEN
COMMUNICATION

TECHNIQUES

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5

OBJECT-ORIENTED
PROGRAMMING

DIGITAL
SYSTEMS I

GENERAL CHEMSTRY

SOFTWARE
ENGINEERING I

DIFFERENTIAL
EQUATIONS

DATA STRUCTURES

Figure 6: Courses categorized by the factors to
which they belong

The groups of courses defined by the generated factors
reflect to a really large extent the logic clusters defined in the
curricular design of the analyzed CS program. Following, we
provide the interpretations of each factor found according to
the known characteristics of the analyzed curricular design.

Factor 1 (The basic training factor): Elements in
this group can be classified in two categories: Basic science
courses, and fundamental CS courses. The first category
cover topics aimed the understanding of abstract ideas and

153

Differential and Integral Calculus
Linear Algebra

Multivariate Calculus
Digital Systems I

Basic Physics
Porgramming Fundamentals

Discrete Mathematics
General Chemistry

Statistics
Data Structures

Computing and Society
Algorithms Analysis

Differential Equations
Ecology and Environmental Education

Object-Oriented Programming

Factor1Classes
0.57
0.48
0.47
0.47
0.45
0.42
0.41
0.38
0.38
0.37
0.36
0.35
0.33
0.33
0.31

Factor2
Artificial Intelligence 0.65

Operative Systems 0.62
Software Engineering I 0.36

Object-Oriented Programming 0.34
Economic Engineering 0.34

Hardware Architectures 0.34
Database Systems 0.33
Digital Systems I 0.31

Human-Computer Interaction 0.31

Classes

Factor3
Software Engineering II 0.68
Software Engineering I 0.59

Human-Computer Interaction 0.43
Oral and Written Communication Techniques 0.36

General Chemistry 0.34

Classes

Factor4
Programming Languages 0.73

Object-Oriented Programming 0.42
Data Structures 0.33

Classes
Factor5

Electrical Networks 0.57
Differential Equations 0.43

Classes

Figure 5: Factors and variable-factors correlations grouped after applying a cutoff of 0.3

concepts. These abstractions lie at several levels: mathe-
matical (Calculus and Linear Algebra), logical (Digital Sys-
tems), natural phenomena (Chemistry, Physics, Ecology and
Environmental Education) and data interpretation (Statis-
tics).

On the other hand, the second category groups funda-
mental CS courses. Computers and Society, Programming
Fundamentals, Data Structures and Algorithm Analysis are
the first set of courses of the CS program offered to students.
In particular, the Discrete Mathematics course is a good ex-
ample of a subject in which mathematical abstractions are
thought with a focus strongly oriented to computing appli-
cations.

Four of the courses included in Factor 1 are also correlated
at a considerable level with some other factors. The anal-
ysis of the following factors will provide the corresponding
interpretations of these shared correlations.

Factor 2 (The advanced CS topics factor): With
the exception of the Economic Engineering I course, all the
subjects in this group cover advanced, high-level CS topics.
This group includes courses related to the design of Database
Systems, the study of Computers’ Architecture and Organi-
zation, Object-Oriented Programming, Software Engineer-
ing, Human Computer Interaction, Digital Systems, Artifi-
cial Intelligence, and Operating Systems. In general, these
courses refer to the identification of a system’s components
and their interrelationships. The only course that seems
to be misplaced in this subset is the Economic Engineering
class.

Factor 3 (The client interaction factor): This fac-
tor seems to cover aspects related to communication skills
needed to deal with final users and stakeholders involved in
the software developing process. In that sense, it includes
the Oral and Written Communication Techniques and Re-
search course and other courses that are also correlated with
Factor 2. More specifically, these courses are mainly related
to the software building process and interaction with clients
and final users. In this point, it is important to mention
that most of these courses (with the exception of General

Chemistry) are organized in ESPOL in such a way that stu-
dents do have actual clients for which they have to develop
functional software projects during the class. Thus, it is
comprehensible that, besides being part of the advanced CS
topics factor, they share correlation with Factor 3.

Factor 4 (The programming factor): The courses
grouped under this factor constitute those exclusively ded-
icated to develop programming skills and abstraction con-
ceptualizations. These courses are, in the curricular design
of the ESPOL CS program, in what is called the programing
sequence of the curriculum. The concepts covered by all of
these courses are related to programming skills.

Factor 5: This group seems to include courses that can-
not be grouped with any other of the CS curriculum. It
is interesting to see that, these courses are more linked to
electrical engineering courses, which were included in the
curriculum as a requisite of the college (Electrical and Com-
puter Engineering). These courses are commonly seen by
students as subjects that do not fit in their degree because
are not directly applied to solving problems related to CS.

The main conclusion of the curriculum coherence analy-
sis conducted in this section is that it allows us to identify
which courses of a curricular design form logical structures
aimed to develop interrelated professional competences. To
confirm the soundness of the found groups, additional EFAs
could be performed on other type of data related to the
courses that compose a curriculum. For instance, instead
of considering the students’ academic performance informa-
tion, we might consider the distances between each class
grade obtained by the students and their GPA.

It has to be said that a very important component of this
analysis is the interpretation of the factors output by the
EFA. Coherence requires subjective judgment and that can
be done only when the context on which the curriculum
takes place is very well known. This implies that all the
identified structures have to be further analyzed by human
evaluators with a deep understanding of the nature of the
program and its particularities in order to see the logic be-
hind the discovered grouping structures. In any case, having

154

an objective statistical method over which a judgment can
be done is a positive starting point to take decisions on the
curricular design within academic institutions.

Regarding the case study, the results suggest that some
courses do not align with the main CS competences factors
(Differential Equations and Electric Networks). This result,
together with the knowledge that these courses were initially
considered only because they were part of the Electrical En-
gineering curriculum, should spark a discussion about their
real importance in the CS curriculum. Also, it was sur-
prising to find that Programming Fundamentals is not con-
sidered in the programming factor (factor 4). This result,
linked with the previous result of the lack of correlation be-
tween grades of Programming Fundamentals with the rest
of the programming courses, warranty a deeper qualitative
analysis of the content and methodologies of this course.

7. DROPOUT AND ENROLLING PATHS
In this study, academic dropout is defined as a student

who enrolled in an academic program that eventually, at
some point before completing the corresponding degree, per-
manently abandoned it. This type of academic desertion has
been widely investigated for several decades in works mainly
oriented to explain its causes. Factors such as race and gen-
der [11], socio-economic and family backgrounds [17], stu-
dent’s engagement with school activities [2], extracurricu-
lar load [12], and the like, have been repeatedly explored
not only to explain dropout but also to construct predictive
models for the early detection of potential desertion scenar-
ios.

However, no works have been conducted to explore the
existence of relationships, if any, between dropouts and cur-
ricular designs. This section proposes the use of frequent
sequence analysis as a technique to answer the following
question: Are there any frequent enrolling paths followed by
students within a curriculum that lead to dropout settings?
If so, to which extent a given enrolling path is frequently ob-
served as a previous necessary condition for desertions? Our
analysis refers to an enrolling path as a specific sequence of
courses taken (or failed) by a student along his/her academic
history. Following section explains the theoretical motiva-
tions for the application of sequence mining and details how
it can be used to track students’ enrolling patterns that lead
them to quit their academic programs.

7.1 Description
The goal of sequence mining is to discover sequential pat-

terns of frequently repeated events in a given database of
temporal transactions [13]. Among many others, scenar-
ios where this type of mining task has been used include:
sales databases of items bought by customers [8], analysis
of users’ activity in web searching and browsing [14], and
disease identification based on sequences of symptoms [22].

In sequence mining, frequent patterns are considered to
emerge over time as the events that compose the sequences
occur repeatedly. A sequence α is considered frequent if
it is contained by a minimum number of input-sequences
that form the database D. This minimum value is called
the support or frequency of α. To illustrate the concept of
support, consider the scenario where a bookstore keeps his-
torical record on the books bought by each of its customers.
This information could be mined to find behavioural pat-
terns in the users’ buying habits to predict, for example,

how likely is that a given customer that has bought book
A eventually come back to buy book B, given that 80% of
previous buyers of book A actually did so.

Considering that students’ academic history takes places
over a period of time with very well known courses’ times-
tamps, sequence mining techniques can be applied to find
frequent patterns in the way students enroll in the courses
that compose their programs’ curricula. More specifically,
frequent sequence analysis can be conducted over the fail-
ure segments of the students’ academic history to investigate
whether particular failing course patterns conduct students
to more dropout scenarios than others.

7.2 Application
The failing academic events of 610 dropouts were inves-

tigated to find the most frequent courses and sequences of
courses that were failed by students before abandoning their
undergraduate studies. The analyzed subset was part of
a greater cohort of 1591 students that enrolled at the CS
program of ESPOL along the last twelve years (2000-2012).
Thus, the original CS population evidences a dropout rate
of 38.34%.

The SPADE algorithm [25], an approach for fast discovery
of sequential patterns, was applied to the described subset
of enrolling information using a minimum support of 0.3.
The results of this algorithm are detailed in Table 3, which
clearly shows that before deciding to quit, a large propor-
tion of the investigated students failed courses on the ba-
sic training levels of their curriculum (that is, courses from
Factor 1 of section 6.3). These result implies that most of
these students decided to dropout immediately after dealing
with fundamental concepts related to general Science and
Engineering. Among all these courses, the most frequent
event associated with dropout is the failure of the Physics A
course, which was failed by about 61% of the students that
eventually left the CS program.

Since the investigated dropouts did not take place at ad-
vanced levels or high phases of their academic history, stu-
dents who abandoned the CS program did it without having
the opportunity to interact with actual CS topics. The Pro-
gramming Fundamentals course is the first CS course that
is part of the more frequent steps previous to dropouts. It
appears third in the list with a support of 0.53.

Results of the sequence mining performed are consistent
with those obtained from the perception study described in
section 4. Interestingly, the Physics A course is perceived
as an important course that enables a student to continue
the CS Program (10%) but not as important as the Pro-
gramming Fundamentals course (50%). Therefore, failing
such courses refrain students to continue in their CS edu-
cation. Again, 6 out of 11 perceived important courses are
from the basic sciences strand, these courses are mostly the
same found in the set of courses of the failing enrolling path
that lead to dropping out the CS Program. This appar-
ent relationship can be interpreted as a good indicator of
the importance given to them by students that eventually
graduate.

This section proposed sequence mining for the identifica-
tion of enrolling paths defined by students within a curricu-
lum that frequently lead to dropouts scenarios. The identi-
fication of these critical trajectories in curricular designs is
of special importance when decisions have to be taken to re-
duce or minimize the desertion rates. Finding critical paths

155

Table 3: Frequent failing enrolling paths that lead to dropout scenarios (Support = 0.3)

Sequence Support
<{Physics A},{Dropout}> 0.608196721

<{Differential Calculus},{Dropout}> 0.570491803
<{Programming Fundamentals},{Dropout}> 0.532786885

<{Integral Calculus},{Dropout}> 0.496721311
<{Physics A, Differential Calculus},{Dropout}> 0.43442623

<{Linear Algebra},{Dropout}> 0.432786885
<{Differential Calculus,Integral Calculus},{Dropout}> 0.385245902

<{Physics C},{Dropout}> 0.347540984
<{Physics A,Integral Calculus},{Dropout}> 0.327868852

<{General Chemistry},{Dropout}> 0.319672131
<{Differential Equations},{Dropout}> 0.31147541

to avoid dropout and to reduce the negative impact of cer-
tain courses in desertion rates is a key input for curricular
design. Administrators, faculty members and curricular de-
signers can take data-driven decisions and plan accordingly.
Moreover, this technique can be also applied to academic
events of other types, such as successful scenarios to detect
enrolling paths that are more likely to conduct students to
graduation.

8. LOAD/PERFORMANCE GRAPH
The balance between academic load and academic per-

formance is of vital importance for students’ success. The
achievement of an optimal trade-off between these two fac-
tors is highly related to the curricular design in the sense
that it defines (or, at least, suggests) the way in which stu-
dents should enroll in the courses of their degrees. How
courses are assigned to different levels, the established pre-
requisites, and the list of possible optimal courses are some of
the factors that influence the academic history of students of
all levels. This implies that a good curricular design should
seek the maximization of students’ academic performance at
the same time that it properly manages their working load.
Given this context, mechanisms to characterize the load ver-
sus performance profile of a curriculum are highly desired.
This section explains a technique to build such profiles by
proposing some measurements for the load and performance
magnitudes.

8.1 Description
Academic load can be associated to several factors: 1) num-

ber of courses taken in a particular academic period, 2) to-
tal difficulty pursued by the student, and 3) total grading
stringency to which the student is subjected. On the other
hand, performance can be seen in function of other several
factors such as: 1) number of courses a student pass in a
given academic period, 2) total courses’ difficulty achieved,
and 3) total grading stringency of the courses the student
managed to pass.

Constructing visualizations of the trajectories followed by
students in the load/performance graph could provide cur-
riculum designers with information about how well different
students manage the recommended class load and what is
the actual preferred load of different kind of students.

8.2 Application
Figure 7 plots the density plot of the semestral load and

performance information for all the students of the investi-

gated dataset. Load is represented here by the difficulty of
the courses taken by the student. On the other hand, per-
formance is expressed in terms of the total difficulty of the
passed courses. This graph represents the relation between
the total difficulty achieved on a semester and the total dif-
ficulty pursued on the same period of time. We calculated
the total difficulty pursued by a student as the sum of the
individual courses taking at a given academic period. Sim-
ilarly, the total difficulty achieved is defined as the sum of
the difficulties of the passed courses. Being a density plot,
this graph shows how many times students had an specific
value of in the load/performance plane.

Pursued Difficulty (Load)

Ac
hi

ev
ed

 D
iff

ic
ul

ty
 (P

er
fo

rm
an

ce
)

0

2

4

6

8

0 2 4 6 8

level

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 7: Semestral load versus performance density
plot

As it can be easily seen in the Figure 7, most students
have a load around 4, 5 or 6 (darker tones). There is a fairly
large population that usually achieve the pursued difficulty,
that is, they approve all the courses that they take. There
is also a noticeable population of students that usually fail
1 or 2 courses (dark spots under the diagonal), meaning
that these students were taking more load than they could
effectively manage. In the curriculum the recommended load
is 6 courses. However, the largest population of students are
not taking that load, but only 5 courses or even 4 courses.
Even with that load, a fair amount of them is failing at
least 1 course. It is clear that a more realistic recommended
load of 5 courses (or 4 if a difficult course is taken) is more
advisable for the students of this program.

156

9. CONCLUSIONS
Historical academic performance data, while limited, pro-

vide an easy gateway to start conducting Learning Analytics
studies on the characteristics and relation of diverse courses
inside a program curriculum. The information that could
be obtained, even with very simple techniques, could help
faculty and institutional administrator to understand their
programs beyond a merely theoretical viewpoint. The tech-
niques presented in this work have the potential to start
informed discussions inside faculty members that could lead
to an improvement of the learning process of the student,
not by changing particular aspects of a course, but deciding
which courses are taught and in which sequence.

The application of these techniques to the case study has
provided valuable information that will be used in an ex-
pected re-design of the CS program at ESPOL. The difficulty
estimation analysis suggests that some courses, in particular
Programming Fundamentals, should be re-designed or even
divided to reduce their complexity. The methodology and
evaluation of others courses, such as Oral and Written Ex-
pression and Research, should be reviewed to provide level
of stringency closer to the mean. The dependence analysis
highlighted the fact that current pre-requisites are not as im-
portant as previously thought and that the performance of
student in perceived difficult courses is not correlated with
their performance in other courses, suggesting that a re-
laxation of the difficulty of initial courses will not have a
major impact further in the program. The curriculum co-
herence analysis discovered that there are four major classes
of courses in the program: Basic Concepts, Advanced CS
concepts, Programming and Project/Client related. A fifth
class, grouping the Electrical Engineering courses, seems to
be disconnected from the overall flow of the program and
should be considered for elimination. The dropout and en-
rollment path analysis suggests that failing basic courses,
not really related with CS, is one of the main indicators of fu-
ture desertion. Maybe the curriculum re-design should pro-
vide more core CS courses at the beginning of the program.
Finally, the load/performance analysis indicates that the
current workload is too heavy for the majority of students.
A re-design should consider lowering the recommended load
to 5 courses, while allowing high-performing students to ad-
vance at a faster pace. All these recommendations should be
evaluated by the program stakeholders in order to to provide
the qualitative analysis needed to validate them.

Far from trying to be a comprehensive set of analytics
tools for curriculum (re-)design, this work attempts to dis-
cuss how very simple statistical and computational tech-
niques could be applied to historic academic performance
data to gain insight on possible problems or improvement
opportunities in whole program curricula. Moreover, the
real objective behind this research is to encourage other re-
searchers to critique and improve over these simple tech-
niques in order to extend the impact of Learning Analytics
beyond the scope of individual courses.

10. REFERENCES
[1] L. Albert. Curriculum design: Finding a balance. Journal of

rheumatology, 34(3):458–459, 2007.

[2] I. Archambault, M. Janosz, J.-S. Fallu, and L. S. Pagani.
Student engagement and its relationship with early high school
dropout. Journal of adolescence, 32(3):651–670, 2009.

[3] V. V. Busato, F. J. Prins, J. J. Elshout, and C. Hamaker.
Intellectual ability, learning style, personality, achievement

motivation and academic success of psychology students in
higher education. Personality and Individual Differences,
29(6):1057 – 1068, 2000.

[4] J. P. Campbell, P. B. DeBlois, and D. G. Oblinger. Academic
analytics: A new tool for a new era. Educause Review,
42(4):40, 2007.

[5] J. P. Caulkins, P. D. Larkey, and J. Wei. Adjusting gpa to
reflect course difficulty. 1996.

[6] B. B. de Koning, S. M. Loyens, R. M. Rikers, G. Smeets, and
H. T. van der Molen. Generation psy: Student characteristics
and academic achievement in a three-year problem-based
learning bachelor program. Learning and Individual
Differences, 22(3):313 – 323, 2012.

[7] J. W. Denton, V. Franke, and K. N. Surendra. Curriculum and
course design: a new approach using quality function
deployment. Journal of Education for Business,
81(2):111–117, 2005.

[8] M. Ester, H.-P. Kriegel, and M. Schubert. Web site mining: a
new way to spot competitors, customers and suppliers in the
world wide web. In Proceedings of the eighth ACM SIGKDD
international conference, pages 249–258. ACM, 2002.

[9] R. Ferguson. Learning analytics: drivers, developments and
challenges. International Journal of Technology Enhanced
Learning, 4(5):304–317, 2012.

[10] A. A. for the Advancement of Science. Designs for Science
Literacy. Oxford University Press, Mar. 2001.

[11] W. J. Jordan, J. Lara, and J. M. McPartland. Exploring the
causes of early dropout among race-ethnic and gender groups.
Youth & Society, 28(1):62–94, 1996.

[12] R. B. McNeal Jr. Extracurricular activities and high school
dropouts. Sociology of education, pages 62–80, 1995.

[13] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas.
Incremental and interactive sequence mining. In Proceedings of
the eighth international conference on Information and
knowledge management, pages 251–258. ACM, 1999.

[14] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access
patterns efficiently from web logs. In Knowledge Discovery and
Data Mining. Current Issues and New Applications, pages
396–407. Springer, 2000.

[15] P. Pukkila, J. DeCosmo, D. C. Swick, and M. Arnold. How to
engage in collaborative curriculum design to foster
undergraduate inquiry and research in all disciplines.
Developing and Sustaining a Research-Supportive
Curriculum: A Compendium of Successful Practices, pages
341–357, 2007.

[16] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2013.

[17] R. W. Rumberger. Dropping out of high school: The influence
of race, sex, and family background. American Educational
Research Journal, 20(2):199–220, 1983.

[18] G. Siemens and P. Long. Penetrating the fog: Analytics in
learning and education. Educause Review, 46(5):30–32, 2011.

[19] K. Singh, M. Granville, and S. Dika. Mathematics and science
achievement: Effects of motivation, interest, and academic
engagement. The Journal of Educational Research,
95(6):323–332, 2002.

[20] J. A. Sunderman. Curriculum Incubation : Data-driven
Innovative Instructional Design. In ASEE Annual Conference,
2012.

[21] B. G. Tabachnick and L. Fidell. Using Multivariate Statistics:
International Edition. Pearson, 2012.

[22] F. S. Turner, D. R. Clutterbuck, C. A. Semple, et al. Pocus:
mining genomic sequence annotation to predict disease genes.
Genome biology, 4(11):R75–R75, 2003.

[23] P. Wolf. A model for facilitating curriculum development in
higher education: A faculty-driven, data-informed, and
educational developer–supported approach. New Directions for
Teaching and Learning, 2007(112):15–20, 2007.

[24] A. Wolff, Z. Zdrahal, A. Nikolov, and M. Pantucek. Improving
retention: predicting at-risk students by analysing clicking
behaviour in a virtual learning environment. In Proceedings of
the Third International Conference on Learning Analytics
and Knowledge, pages 145–149. ACM, 2013.

[25] M. J. Zaki. Spade: An efficient algorithm for mining frequent
sequences. Machine learning, 42(1-2):31–60, 2001.

157

	Introduction
	Related Work
	Case Study
	Difficulty Estimation
	Description
	Application

	Dependance Estimation
	Description
	Application

	Curriculum Coherence
	Description
	Application
	Interpretation of Factors

	Dropout and Enrolling Paths
	Description
	Application

	Load/Performance Graph
	Description
	Application

	Conclusions
	References

